If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-40x=0
a = 15; b = -40; c = 0;
Δ = b2-4ac
Δ = -402-4·15·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-40}{2*15}=\frac{0}{30} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+40}{2*15}=\frac{80}{30} =2+2/3 $
| 5x+5-4x=0 | | 6e+3=(1e-1) | | x/18+19=30 | | 5x=8x+48 | | x-7÷8=-3 | | 3(3v-2)=3÷4(4-24v | | 4g-3=37 | | z/2+16=10 | | (56-t)+(69-t)=51 | | 0.15+0.05(12-x)=0.10(0) | | Y=120+16x | | z/8+2=-32 | | 3.52x+4=12.25 | | p-2=0.75p | | 3x+4=1243 | | 45y+4=64y+2 | | 0.13x+0.3(x-1)=0.01(3x-1) | | 0.13x+0.3(x-1)=0.01(3x-1 | | 3/4(8a+12=28.2 | | 14+3y=-5y-18, | | 53/3+m=8 | | 6^2=4(4x-3x) | | -(5y+4)-(-4-6)=2 | | 10=3d+12 | | 12+3d=10 | | 8z+6-4z=10+3z+9 | | 3d+12=10 | | 20+w=29+49 | | 36^m-3=216^-3m-1 | | 9r-6r+7=8r+7-r | | -12x-26=10-6x | | 9=(10n+4) |